Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christian Näther,* Jan Greve and Inke Jeß

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.029 wR factor = 0.075 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[tetra- μ_2 -azido-di- μ_2 -4,4'-bipyridinesodium(I)iron(III)]

In the crystal structure of the title compound, $[FeNa-(N_3)_4(C_{10}H_8N_2)_2]_n$, the Fe and Na atoms are coordinated by four N atoms of azide anions and two N atoms of 4,4'-bipyridine ligands within distorted octahedra. The azide anions are located in general positions whereas the Fe and Na atoms, as well as the 4,4'-bipyridine ligands, are located on twofold axes. The iron and the sodium cations are connected *via* the 4,4'-bipyridine ligands into chains, which are linked by the azide anions into a three-dimensional coordination network.

Received 10 January 2005 Accepted 11 January 2005 Online 22 January 2005

Comment

The structure determination of the title compound, (I), was undertaken as part of a project on the synthesis, crystal structures and properties of new coordination polymers based on paramagnetic transition metals, small anions like cyanide, azide or thiocyanate anions and N-donor ligands (Näther & Greve, 2003). The title compound was obtained by accident and cannot be prepared as a pure phase.

The asymmetric unit of (I) consists of one half Fe atom, one half Na atom, two half 4,4'-bipyridine ligands and two azide anions. Whereas the azide anions are located in general positions, the Fe and Na atoms, as well as the 4,4'-bipyridine ligands, are located on twofold axes. In the structure, the Fe^{III} atoms are sixfold coordinated by two N atoms of two symmetry-related 4,4'-bipyridine ligands and four N atoms of four azide anions, which are related in pairs by symmetry. As expected, the Fe–N bond lengths to the negatively charged azide N atoms are shorter than those to the N atoms of the 4,4'-bipyridine ligands (Fig. 1). The N–Fe–N angles have

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Part of the crystal structure of the title compound, showing the atom labelling and displacement ellipsoids at the 50% probability level. The sodium coordination is indicated by dashed lines. [Symmetry codes: (i) x, y + 1, -z; (ii) $-x + 2, y, -z + \frac{1}{2}$

Figure 2

The crystal structure of the title compound, viewed along the c axis. H atoms have been omitted for clarity and the Na coordination is indicated by dashed lines.

close to ideal octahedral values and the coordination polyhedron can be described as a slightly distorted octahedron. The Na atoms are also sixfold coordinated by two pairs of symmetry-related azide anions and two symmetry-related 4,4'bipyridine ligands (Fig. 2). Compared to the Fe atoms, the octahedron is much more distorted. The Fe and Na atoms are connected by 4,4'-bipyridine ligands into chains which are perpendicular to each other. These chains are connected via the azide anions into a three-dimensional coordination network (Fig. 2).

Experimental

The title compound was prepared by the reaction of FeCl₂ (98.89 mg, 0.5 mmol), NaN₃ (65.10 mg, 1 mmol) and 4,4'-bipyridine (78.30 mg, 0.5 mmol) in acetonitrile (4 ml) at room temperature. After 6 d, the precipitate was filtered off and washed with ethanol and diethyl ether. It consisted of red crystals of the title compound and a light-pink microcrystalline powder which was not identified.

Crystal data

Mo Ka radiation
Cell as a sector of from 2000
Cell parameters from 8000
reflections
$\theta = 16-26^{\circ}$
$\mu = 0.72 \text{ mm}^{-1}$
T = 150 (2) K
Block, red
$0.07 \times 0.06 \times 0.06 \ \mathrm{mm}$

Data collection

Stoe Imaging Plate Diffraction System diffractometer φ scans Absorption correction: none 13 692 measured reflections 2728 independent reflections

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.075$ $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ S=1.09Extinction correction: SHELXL97 2728 reflections Extinction coefficient: 0.0026 (4) 178 parameters Absolute structure: Flack (1983), H-atom parameters constrained 1214 Friedel pairs Flack parameter = 0.007 (15) $w = 1/[\sigma^2(F_o^2) + (0.043P)^2]$ + 1.8553P] where $P = (F_o^2 + 2F_c^2)/3$

Table 1 Selected geometric parameters (Å, °).

Fe1-N3	2.0294 (15)	N5-Na1	2.572 (2)
Fe1-N6	2.0593 (16)	N6-N7	1.192 (2)
Fe1-N1	2.171 (2)	N7-N8	1.148 (3)
N3-N4	1.189 (2)	N8-Na1 ⁱⁱⁱ	2.4476 (19)
N4-N5	1.163 (3)	Na1-N11 ^{iv}	2.464 (3)
N3 ^v -Fe1-N3	179.83 (11)	N3 ^v -Fe1-N2 ^{vi}	89.92 (5)
N3 ^v -Fe1-N6	89.74 (7)	N6 ^v -Fe1-N2 ^{vi}	88.84 (5)
N3-Fe1-N6	90.25 (7)	$N1-Fe1-N2^{vi}$	180
N6-Fe1-N6 ^v	177.69 (10)	N5-N4-N3	176.8 (2)
N3-Fe1-N1	90.08 (5)	N8-N7-N6	177.3 (2)
N6-Fe1-N1	91.16 (5)		

Symmetry codes: (iii) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (iv) x, 1 + y, z; (v) x, 1 - y, -z; (vi) 1 + x, y, z.

2576 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.049$

 $\theta_{\rm max} = 28.1^\circ$ $h = -14 \rightarrow 14$

 $k = -15 \rightarrow 15$

 $l = -22 \rightarrow 22$

All H atoms were located in a difference map and positioned with idealized geometry. They were refined using a riding model $[C-H = 0.95 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: *IPDS* (Stoe & Cie, 1998); cell refinement: *IPDS*; data reduction: *IPDS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXL97*.

This work is supported by the state of Schleswig-Holstein. We are grateful to Professor Dr Wolfgang Bensch for financial support and the facility to use his experimental equipment.

References

- Bruker (1998) SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Näther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259-265.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). IPDS. Version 2.89. Stoe & Cie, Darmstadt, Germany.